

Welcome to skijumpdesign’s documentation!

This is the documentation for “skijumpdesign: A Ski Jump Design and Analysis
Tool for Equivalent Fall Height” based on the work presented in [2]. The
software includes a library for two dimensional skiing simulations and a
graphical web application for designing and analyzing basic ski jumps. The
primary purpose of the software is to provide an open source,
layperson-friendly web application for designing and assessing ski jumps for
the purposes of minimizing equivalent fall height (EFH). Ski jumps that are
designed with low equivalent fall heights will likely reduce injuries. See the
references below for a more thorough discussion of the reasons. A current
version of the web application can be accessed at
http://www.skijumpdesign.info.

(Source code, png, hires.png, pdf)

[image: _images/index-1.png]

Contents:

	Installation
	conda

	pip

	setuptools

	Optional dependencies

	Development Installation

	Render.com Installation

	Running the Web Application
	User

	Developer

	Example: Design EFH Jump
	Approach

	Approach-Takeoff Transition

	Flight

	Landing Transition

	Constant EFH Landing

	Entire Jump

	Example: Analyze Jump EFH
	Load Data

	Flight

	Calculate Equivalent Fall Height

	Examples: Analysis of Real Jumps
	Selection of an Equivalent Fall Height

	Design Speed

	California 2002

	Washington 2004

	Utah 2010

	Colorado 2009

	Wisconsin 2015

	Sydney 2020

	Application Programming Interface (API)
	skijumpdesign/functions.py

	skijumpdesign/skiers.py

	skijumpdesign/surfaces.py

	skijumpdesign/trajectories.py

	skijumpdesign/utils.py

References

The following references provide background information on the theory and
rationale of the software implementation.

A paper on this software implementation:

[1]
Moore, Jason K. and Mont Hubbard, (2018). skijumpdesign: A Ski Jump
Design Tool for Specified Equivalent Fall Height. Journal of Open Source
Software, 3(28), 818, https://doi.org/10.21105/joss.00818

Which is based on this primary reference:

[2]
Levy, Dean, Mont Hubbard, James A. McNeil, and Andrew Swedberg. “A
Design Rationale for Safer Terrain Park Jumps That Limit Equivalent Fall
Height.” Sports Engineering 18, no. 4 (December 2015): 227–39.
https://doi.org/10.1007/s12283-015-0182-6.

The following are also useful for more in-depth study (in chronological order):

[3]
Hubbard, Mont. “Safer Ski Jump Landing Surface Design Limits Normal
Impact Velocity.” Journal of ASTM International 6, no. 1 (2009): 10.
https://doi.org/10.1520/STP47480S.

[4]
McNeil, James A., and James B. McNeil. “Dynamical Analysis of Winter
Terrain Park Jumps.” Sports Engineering 11, no. 3 (June 2009): 159–64.
https://doi.org/10.1007/s12283-009-0013-8.

[5]
Swedberg, Andrew Davis. “Safer Ski Jumps: Design of Landing Surfaces and
Clothoidal in-Run Transitions.” Master of Science in Applied Mathematics,
Naval Postgraduate School, 2010.

[6]
Hubbard, Mont, and Andrew D. Swedberg. “Design of Terrain Park Jump
Landing Surfaces for Constant Equivalent Fall Height Is Robust to
‘Uncontrollable’ Factors.” In Skiing Trauma and Safety: 19th Volume, edited
by Robert J. Johnson, Jasper E. Shealy, Richard M. Greenwald, and Irving S.
Scher, 75–94. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA
19428-2959: ASTM International, 2012. https://doi.org/10.1520/STP104515.

[7]
Swedberg, Andrew D., and Mont Hubbard. “Modeling Terrain Park Jumps:
Linear Tabletop Geometry May Not Limit Equivalent Fall Height.” In Skiing
Trauma and Safety: 19th Volume, edited by Robert J. Johnson, Jasper E.
Shealy, Richard M. Greenwald, and Irving S. Scher, 120–35. 100 Barr Harbor
Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International,
2012. https://doi.org/10.1520/STP104335.

[8]
McNeil, James A., Mont Hubbard, and Andrew D. Swedberg. “Designing
Tomorrow’s Snow Park Jump.” Sports Engineering 15, no. 1 (March 2012): 1–20.
https://doi.org/10.1007/s12283-012-0083-x.

[9]
Hubbard, Mont, James A. McNeil, Nicola Petrone, and Matteo Cognolato.
“Impact Performance of Standard Tabletop and Constant Equivalent Fall Height
Snow Park Jumps.” In Skiing Trauma and Safety: 20th Volume, edited by Robert
J. Johnson, Jasper E. Shealy, and Richard M. Greenwald, 51–71. 100 Barr
Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM
International, 2015. https://doi.org/10.1520/STP158220140027.

[10]
Petrone, Nicola, Matteo Cognolato, James A. McNeil, and Mont Hubbard.
“Designing, Building, Measuring, and Testing a Constant Equivalent Fall Height
Terrain Park Jump.” Sports Engineering 20, no. 4 (December 2017): 283–92.
https://doi.org/10.1007/s12283-017-0253-y.

Indices and tables

	Index

	Module Index

	Search Page

Installation

skijumpdesign can be installed using several tools. Below are recommended
options, in order of the developers’ preference.

conda

The library and web application can be installed into the root conda [http://conda.io]
environment from the Conda Forge channel [https://anaconda.org/conda-forge] at anaconda.org. This requires
installing either miniconda [https://conda.io/miniconda.html] or Anaconda [https://www.anaconda.com/download] first. Once conda is available run:

$ conda install -c conda-forge skijumpdesign

The Anaconda Navigator graphical installer can also be used to accomplish the
same result.

pip

The library and web application can be installed from PyPi [http://pypi.org] using pip [http://pip.pypa.io] [1]:

$ pip install skijumpdesign

If you want to run the unit tests and/or build the documentation use:

$ pip install skijumpdesign[dev]

to also install the development dependencies.

setuptools

Download and unpack the source code to a local directory, e.g.
/path/to/skijumpdesign.

Open a terminal. Navigate to the skijumpdesign directory:

$ cd /path/to/skijumpdesign

Install with [1]:

$ python setup.py install

[1]
(1,2)
Note that you likely want to install into a user directory with
pip/setuptools. See the pip and setuptools documentation on how to do this.

Optional dependencies

If pycvodes [https://github.com/bjodah/pycvodes] is installed it will be used to speed up the flight simulation and
the landing surface calculation significantly. This library is not trivial to
install on all operating systems, so you will need to refer its documentation
for installation instructions. If you are using conda Linux or OSX, this
package can be installed using conda with:

$ conda install -c conda-forge pycvodes

Development Installation

Clone the repository with git:

$ git clone https://gitlab.com/moorepants/skijumpdesign

Navigate to the cloned skijumpdesign repository:

$ cd skijumpdesign/

Setup the custom development conda environment named skijumpdesign to
ensure it has all of the correct software dependencies. To create the
environment type:

$ conda env create -f conda/skijumpdesign-lib-dev.yml

To activate the environment type [2]:

$ conda activate skijumpdesign-lib-dev
(skijumpdesign-lib-dev)$

Optionally, install in development mode using setuptools for use from any
directory:

(skijumpdesign-lib-dev)$ python setup.py develop

There are several conda environment files provided in the source code that may
be of use:

	skijumpdesign-app.yml: Installs the versions of the required dependencies
to run the library and the web app pinned to specific versions for the app.
These are the versions we use to run the official web app.

	skijumpdesign-app-opt.yml: Installs the versions of the required and
optional dependencies to run the library and the web app pinned to specific
versions for the app. These are the versions we use to run the official web
app.

	skijumpdesign-app-dev.yml: Installs the versions of the required
dependencies to run the library and the web app pinned to specific versions
for the app plus tools for development. These are the versions we use to run
the official web app.

	skijumpdesign-app-opt-dev.yml: Installs the versions of the required and
optional dependencies to run the library and the web app pinned to specific
versions for the app plus tools for development. These are the versions we
use to run the official web app.

	skijumpdesign-lib.yml: Installs the latest version of the required
dependencies to run the library and the web app.

	skijumpdesign-lib-opt.yml: Installs the latest version of the required
and optional dependencies to run the library and the web app.

	skijumpdesign-lib-dev.yml: Installs the latest version of the required
dependencies to run the library and the web app, test the code, and build the
documentation.

	skijumpdesign-lib-opt-dev.yml: Installs the latest version of the
required and optional dependencies to run the library and the web app, test
the code, and build the documentation.

[2]
This environment will also show up in the Anaconda Navigator program.

Render.com Installation

When installing into a Render web service, the application will make use of the
requirements.txt file included in the source code which installs all of the
dependencies needed to run the software on a live onrender.com instance. You
need to set some environment variables for the Render app:

	ONRENDER=true: Lets the app know if it is running on Render.com.

	GATRACKINGID: Set the value as a string with your Google Analytics
tracking id.

Running the Web Application

User

After installing skijumpdesign type:

$ skijumpdesign

to run the web application. This should launch the application on your
computer’s port 8050. You can view the application by visiting
http://localhost:8050 in your preferred web browser. <CTRL + C> will
stop the server.

Developer

The bin/skijumpdesign entry point is not available unless you install the
software. The following shows how to launch the app from the Python file.

In a terminal

Navigate to the skijumpdesign directory on your computer:

$ cd /path/to/skijumpdesign

Activate the custom Conda environment with:

$ conda activate skijumpdesign-lib-dev

Now run the application with:

(skijumpdesign-lib-dev)$ python -m skijumpdesign.app

You should see something like:

* Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)

Open your web browser and enter the displayed URL to interact with the web app.
Type <CTRL>+C in the terminal to shutdown the web server.

In Spyder

Open Anaconda Navigator, switch to the skijumpdesign-lib-dev environment,
and then launch Spyder. Set the working directory to the
/path/to/skijumpdesign directory. In the Spyder IPython console execute:

In [1]: run skijumpdesign/app.py

If successful, you will see something like:

* Running on http://127.0.0.1:8050/ (Press CTRL+C to quit)

Open your web browser and enter the displayed URL to interact with the web app.

To shutdown the web app, close the tab in your web browser. Go back to Spyder
and execute <CTRL>+C to shutdown the web server.

Example: Design EFH Jump

The following page describes how to construct an example constant equivalent
fall height ski jump landing surface using the skijumpdesign API. Make sure to install the library first.

Approach

Start by creating a 25 meter length of an approach path (also called the
in-run) which is flat and has a downward slope angle of 20 degrees. The
resulting surface can be visualized with the
plot() method.

from skijumpdesign import FlatSurface

approach_ang = -np.deg2rad(20) # radians
approach_len = 25.0 # meters

approach = FlatSurface(approach_ang, approach_len)
approach.plot()

(Source code, png, hires.png, pdf)

[image: _images/build-jump-1.png]

Now that a surface has been created, a skier can be created. The skier can
“ski” along the approach surface using the
slide_on() method which generates a skiing
simulation trajectory.

from skijumpdesign import Skier

skier = Skier()

approach_traj = skier.slide_on(approach)

approach_traj.plot_time_series()

(Source code)

[image: _images/build-jump-2_00.png]

(png, hires.png, pdf)

[image: _images/build-jump-2_01.png]

(png, hires.png, pdf)

[image: _images/build-jump-2_02.png]

(png, hires.png, pdf)

Approach-Takeoff Transition

The approach-takeoff transition is constructed with a
clothoid-circle-clothoid-flat surface to transition from the parent slope angle
to the desired takeoff angle, in this case 15 degrees.

from skijumpdesign import TakeoffSurface

takeoff_entry_speed = skier.end_speed_on(approach)

takeoff_ang = np.deg2rad(15)

takeoff = TakeoffSurface(skier, approach_ang, takeoff_ang,
 takeoff_entry_speed, init_pos=approach.end)

ax = approach.plot()
takeoff.plot(ax=ax)

(Source code, png, hires.png, pdf)

[image: _images/build-jump-3.png]

The trajectory of the skier on the takeoff can be examined also.

takeoff_traj = skier.slide_on(takeoff, takeoff_entry_speed)

takeoff_traj.plot_time_series()

(Source code)

[image: _images/build-jump-4_00.png]

(png, hires.png, pdf)

[image: _images/build-jump-4_01.png]

(png, hires.png, pdf)

[image: _images/build-jump-4_02.png]

(png, hires.png, pdf)

Flight

Once the skier leaves the takeoff ramp at the maximum (design) speed they will
be in flight. The fly_to() method can be used
to simulate this longest flight trajectory.

takeoff_vel = skier.end_vel_on(takeoff, init_speed=takeoff_entry_speed)

flight = skier.fly_to(approach, init_pos=takeoff.end,
 init_vel=takeoff_vel)

flight.plot_time_series()

(Source code)

[image: _images/build-jump-5_00.png]

(png, hires.png, pdf)

[image: _images/build-jump-5_01.png]

(png, hires.png, pdf)

[image: _images/build-jump-5_02.png]

(png, hires.png, pdf)

The design speed flight trajectory can be plotted as an extension of the approach and takeoff
surfaces.

ax = approach.plot()
ax = takeoff.plot(ax=ax)
flight.plot(ax=ax, color='#9467bd')

(Source code, png, hires.png, pdf)

[image: _images/build-jump-6.png]

Landing Transition

The final part of this step is to determine the landing transition curve (shown
in red below) which connects the optimum (cheapest) constant EFH landing
surface to the parent slope. There are an infinite number of landing surfaces
that satisfy the EFH differential equation and provide the desired equivalent
fall height. The algorithm selects the one of these that is closest to the
parent slope, and hence is least expensive to build (in terms of snow volume),
but which still is able to transition back to the parent slope with slope
continuity and simultaneously is constrained to experience limited normal
acceleration.

from skijumpdesign import LandingTransitionSurface

fall_height = 0.5

landing_trans = LandingTransitionSurface(approach,
 flight, fall_height, skier.tolerable_landing_acc)

ax = approach.plot()
ax = takeoff.plot(ax=ax)
ax = flight.plot(ax=ax, color='#9467bd')
landing_trans.plot(ax=ax, color='#d62728')

(Source code, png, hires.png, pdf)

[image: _images/build-jump-7.png]

Constant EFH Landing

Finally, the cheapest equivalent fall height landing surface (shown in green below)
can be calculated. This surface is continuous in slope with the landing transition
surface at the impact point. It accommodates all takeoff speeds below the maximum
takeoff (design) speed above.

from skijumpdesign import LandingSurface

slope = FlatSurface(approach_ang, np.sqrt(landing_trans.end[0]**2 +
 landing_trans.end[1]**2) + 1.0)

landing = LandingSurface(skier, takeoff.end, takeoff_ang,
 landing_trans.start, fall_height,
 surf=slope)

ax = approach.plot()
ax = takeoff.plot(ax=ax)
ax = flight.plot(ax=ax, color='#9467bd')
ax = landing_trans.plot(ax=ax, color='#d62728')
landing.plot(ax=ax, color='#2ca02c')

(Source code, png, hires.png, pdf)

[image: _images/build-jump-8.png]

The design calculates a landing surface shape that produces a constant
equivalent fall height. This can be verified using the
calculate_efh() function that
calculates the equivalent fall height for the surface that was produced. See
the analyze jump page to learn more about this function.

from skijumpdesign.functions import plot_efh

dist, efh, speeds = landing.calculate_efh(takeoff_ang, takeoff.end,
 skier, increment=1.0)
plot_efh(landing, np.rad2deg(takeoff_ang), takeoff.end, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/build-jump-9.png]

Entire Jump

There is also convenience function for plotting the jump:

from skijumpdesign import plot_jump

plot_jump(slope, approach, takeoff, landing, landing_trans, flight)

(Source code, png, hires.png, pdf)

[image: _images/build-jump-10.png]

Example: Analyze Jump EFH

The following page describes how to analyze an existing or hypothetical ski
jump landing surface by calculating it’s equivalent fall height using the
skijumpdesign API. Make sure to install the
library first.

Load Data

Start by loading data of a ski jump surface’s horizontal and vertical
coordinates measured in meters. The resulting surface can be visualized with
the plot() method. Create a tuple for the
takeoff point coordinates, and a variable for the takeoff angle. Data for this
example is taken from a jump measured with a level and tape measure and
translated into horizontal (x) and vertical (y) components. The sample surface
below was collected from a real slope and jump.

from skijumpdesign import Surface
import numpy as np

takeoff_ang = 10 # degrees
takeoff_point = (0, 0) # meters

x_ft = [-232.3,-203.7,-175.0,-146.3,-117.0,-107.4,-97.7,-88.0,-78.2,
 -68.5,-58.8,-49.1,-39.4,-34.5,-29.7,-24.8,-19.8,-17.8,-15.8,
 -13.8,-11.8,-9.8,-7.8,-5.9,-3.9,-2.0,0.0,0.0,0.0,2.0,3.9,5.9,
 7.9,9.9,11.9,13.9,15.9,17.9,19.9,21.9,23.9,25.8,27.8,29.7,
 31.5,33.4,35.2, 37.0,38.8,43.3,47.8,52.3,56.8,61.5,66.2,70.9,
 75.7,80.6,85.5,88.4,88.4] # feet

y_ft = [55.5,46.4,37.7,29.1,22.2,19.7,17.2,14.8,12.5,10.2,7.7,5.2,
 2.9,1.8,0.7,-0.2,-1.0,-1.2,-1.4,-1.6,-1.7,-1.6,-1.5,-1.3,
 -1.0,-0.4,0.0,0.0,0.0,-0.3,-0.8,-1.0,-1.4,-1.4,-1.5,-1.5,-1.5,
 -1.5,-1.6,-1.8,-2.0,-2.4,-2.9,-3.5,-4.2,-5.0,-5.8,-6.7,-7.5,
 -9.8,-12.0,-14.2,-16.2,-18.1,-19.8,-21.4,-22.9,-24.0,-25.0,
 -25.6,-25.6] # feet

x = np.asarray(x_ft)*0.3048 # convert to meters
y = np.asarray(y_ft)*0.3048 # convert to meters

measured_surf = Surface(x, y)

measured_surf.plot()

(Source code, png, hires.png, pdf)

[image: _images/analyze-jump-1.png]

Now that a surface has been created, a skier can be created. The skier can
“ski” along the surface by extracting the data in the array before takeoff and
using the slide_on() method which generates a
skiing simulation trajectory.

from skijumpdesign import Skier

x_beforetakeoff = x[x<=takeoff_point[0]]
y_beforetakeoff = y[x<=takeoff_point[0]]

before_takeoff = Surface(x_beforetakeoff, y_beforetakeoff)

skier = Skier()

beforetakeoff_traj = skier.slide_on(before_takeoff)

beforetakeoff_traj.plot_time_series()

(Source code)

[image: _images/analyze-jump-2_00.png]

(png, hires.png, pdf)

[image: _images/analyze-jump-2_01.png]

(png, hires.png, pdf)

[image: _images/analyze-jump-2_02.png]

(png, hires.png, pdf)

Flight

Once the skier leaves the takeoff ramp at the maximum (design) speed they will
be in flight. The fly_to() method can be used
to simulate this longest flight trajectory.

takeoff_vel = skier.end_vel_on(before_takeoff)

flight = skier.fly_to(measured_surf, init_pos=before_takeoff.end,
 init_vel=takeoff_vel)

flight.plot_time_series()

(Source code)

[image: _images/analyze-jump-3_00.png]

(png, hires.png, pdf)

[image: _images/analyze-jump-3_01.png]

(png, hires.png, pdf)

[image: _images/analyze-jump-3_02.png]

(png, hires.png, pdf)

The design speed flight trajectory can be plotted in addition to the surface.

ax = measured_surf.plot()
flight.plot(ax=ax, color='#9467bd')

(Source code, png, hires.png, pdf)

[image: _images/analyze-jump-4.png]

Calculate Equivalent Fall Height

The equivalent fall height of the landing surface is calculated at constant
intervals relative to the provided takeoff point or start of the surface.

dist, efh, speeds = measured_surf.calculate_efh(
 np.deg2rad(takeoff_ang), takeoff_point,skier, increment=1.0)

(Source code)

There is a convenience function for plotting the calculated efh.

from skijumpdesign.functions import plot_efh

plot_efh(measured_surf, takeoff_ang, takeoff_point, skier=skier,
 increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/analyze-jump-6.png]

Examples: Analysis of Real Jumps

This page analyses several jumps in which people have been injured on. The
jumps have been measured by the package authors over the years. The intention
is to show the utility of the software for analyzing arbitrary jump shapes and
to highlight the large equivalent fall heights of these jump constructions. The
jumps are idenified by location and the year it was measured.

Import packages needed on this page:

import numpy as np
import matplotlib.pyplot as plt
from skijumpdesign import Skier, Surface
from skijumpdesign.functions import (
 make_jump, plot_efh, cartesian_from_measurements)

(Source code)

Selection of an Equivalent Fall Height

Beginner ski slopes range from 6% to 25% grade (3 to 14 degrees) and
intermediate ski slopes range from 25% to 40% (14 to 22 degrees) [1]. Terrain
parks are typically built on steeper beginner slopes or shallow intermediate
slopes, thus a parent slope grade of 25% (14 degrees) is a reasonable choice to
compare the snow budgets of different jumps designed with equivalent fall
heights. The following plot shows how the snow budget increases as EFH
decreases.

parent_slope_grade = 0.25 # percent grade
parent_slope_angle = -np.rad2deg(np.arctan(parent_slope_grade)) # degrees
approach_length = 100.0 # meters
takeoff_angle = 20.0 # degrees

fig, ax = plt.subplots(1, 1)

for efh, color in zip((0.5, 1.0, 1.5), ('C0', 'C1', 'C2')):
 jump = make_jump(parent_slope_angle, 0.0, approach_length,
 takeoff_angle, efh)
 snow_budget = jump[-1]['Snow Budget']
 for i, surf in enumerate(jump[3:-2]):
 if i % 2 == 1:
 lab = 'EFH: {:1.1f} m, Snow Budget: {:1.0f} m²'.format(efh, snow_budget)
 else:
 lab = None
 surf.plot(ax=ax, color=color, label=lab)

ax.set_xlabel('Horizontal Position [m]')
ax.set_ylabel('Vertical Position [m]')
ax.set_aspect('equal')
ax.legend()
ax.grid()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-2.png]

An equivalent fall height of 1.5 m will, on average, cause knee collapse in an
adult [2]. This is a sensible absolute maximal boundary for equivalent fall
height in constructed jumps. An equivalent fall height of 0.5 m is a fairly
benign height, similar to falling from two or three stair steps. A height of 1
m is a good compromise between these two numbers that has a reasonable snow
budget with moderate height. The following jumps will compared to jumps
designed with a 1 m equivalent fall height for this reason.

[1]
https://en.wikipedia.org/wiki/Piste

[2]
A. E. Minetti, “Using leg muscles as shock absorbers: theoretical
predictions and experimental results of drop landing performance,”
Ergonomics, vol. 41, no. 12, pp. 1771–1791, Dec. 1998, doi:
10.1080/001401398185965.

Design Speed

The “design speed” for a constant equivalent fall height jump is defined in
[3] as:

The maximum takeoff velocity (resulting from the highest start point and
minimum snow friction \(\mu\) and air drag \(\eta\)) is called the
design speed.

It is the maximum expected takeoff speed of a skier or snowboarder, which is a
function of the inrun length, slope, friction coefficient, and air drag. The
designed jumps ensure a constant equivalent fall height up to this design
speed.

[3]
Levy, Dean, Mont Hubbard, James A. McNeil, and Andrew Swedberg. “A
Design Rationale for Safer Terrain Park Jumps That Limit Equivalent Fall
Height.” Sports Engineering 18, no. 4 (December 2015): 227–39.
https://doi.org/10.1007/s12283-015-0182-6.

California 2002

The california-2002-surface.csv file contains the horizontal (x)
and vertical (y) coordinates of a jump measured at a ski resort in California,
USA in 2002. The comma separated value file can be loaded with
numpy.loadtxt() and used to create a
Surface. The
plot() method is used to quickly
visualize the measured landing surface. The takeoff location is situated at
(x=0 m, y=0 m).

landing_surface_data = np.loadtxt('california-2002-surface.csv',
 delimiter=',', # comma separated
 skiprows=1) # skip the header row

landing_surface = Surface(landing_surface_data[:, 0], # x values in meters
 landing_surface_data[:, 1]) # y values in meters

ax = landing_surface.plot()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-3.png]

The takeoff angle of this jump was measured as 13 degrees. Using this angle the
equivalent fall height can be visualized across the landing surface.

takeoff_angle = 30.0 # degrees
takeoff_point = (0.0, 0.0) # meters

skier = Skier()

plot_efh(landing_surface, takeoff_angle, takeoff_point,
 skier=skier, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-4.png]

The actual jump can be compared to a jump designed with a constant equivalent
fall height. The figure below shows such a comparison.

def compare_measured_to_designed(measured_surface, equiv_fall_height,
 parent_slope_angle, approach_length,
 takeoff_angle, skier):

 # NOTE : A different Skier() object is used internally in make_jump()
 slope, approach, takeoff, landing, landing_trans, flight, outputs = \
 make_jump(parent_slope_angle, 0.0, approach_length, takeoff_angle,
 equiv_fall_height)

 measured_surface.shift_coordinates(takeoff.end[0], takeoff.end[1])

 design_speed = flight.speed[0]
 low_speed = 1/2*design_speed
 med_speed = 3/4*design_speed

 vel_vec = np.array([np.cos(np.deg2rad(takeoff_angle)),
 np.sin(np.deg2rad(takeoff_angle))])

 flight_low = skier.fly_to(measured_surface, init_pos=takeoff.end,
 init_vel=tuple(low_speed*vel_vec))
 flight_med = skier.fly_to(measured_surface, init_pos=takeoff.end,
 init_vel=tuple(med_speed*vel_vec))

 fig, (prof_ax, efh_ax) = plt.subplots(2, 1, sharex=True,
 constrained_layout=True)

 increment = 1.0

 dist, efh, _ = measured_surface.calculate_efh(np.deg2rad(takeoff_angle),
 takeoff.end, skier, increment)

 efh_ax.bar(dist, efh, color='black', align='center', width=increment/2,
 label="Measured Landing Surface")

 dist, efh, _ = landing.calculate_efh(np.deg2rad(takeoff_angle),
 takeoff.end, skier, increment)

 efh_ax.bar(dist, efh, color='C2', align='edge', width=increment/2,
 label="Designed Landing Surface")

 dist, efh, _ = landing_trans.calculate_efh(np.deg2rad(takeoff_angle),
 takeoff.end, skier, increment)

 efh_ax.bar(dist, efh, color='C2', align='edge', width=increment/2,
 label=None)

 efh_ax.axhline(5.1, color='C1', label='Avg. 2 Story Fall Height')
 efh_ax.axhline(2.6, color='C1', linestyle='dashed',
 label='Avg. 1 Story Fall Height')
 efh_ax.axhline(1.5, color='C1', linestyle='dashdot',
 label='Knee Collapse Height')

 prof_ax = takeoff.plot(ax=prof_ax, linewidth=2, color='C2', label=None)

 prof_ax = flight_low.plot(ax=prof_ax, color='black', linestyle='dashdot',
 label='Flight @ {:1.0f} m/s'.format(low_speed))
 prof_ax = flight_med.plot(ax=prof_ax, color='black', linestyle='dashed',
 label='Flight @ {:1.0f} m/s'.format(med_speed))
 prof_ax = flight.plot(ax=prof_ax, color='black', linestyle='dotted',
 label='Flight @ {:1.0f} m/s'.format(design_speed))

 prof_ax = landing.plot(ax=prof_ax, color='C2', linewidth=2, label=None)
 prof_ax = landing_trans.plot(ax=prof_ax, color='C2', linewidth=2,
 label='Designed Landing Surface')

 prof_ax = measured_surface.plot(ax=prof_ax, color='black',
 label="Measured Landing Surface")

 prof_ax.set_title('Design Speed: {:1.0f} m/s'.format(design_speed))

 prof_ax.set_ylabel('Vertical Position [m]')
 efh_ax.set_ylabel('Equivalent Fall Height [m]')
 efh_ax.set_xlabel('Horizontal Position [m]')

 efh_ax.grid()
 prof_ax.grid()
 efh_ax.legend(loc='upper left')
 prof_ax.legend(loc='lower left')

 return prof_ax, efh_ax

(Source code)

fall_height = 1.0 # meters
slope_angle = -8.0 # degrees
approach_length = 180.0 # meters

compare_measured_to_designed(landing_surface, fall_height, slope_angle,
 approach_length, takeoff_angle, skier)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-6.png]

The average story heights are estimated from [4].

[4]
N. L. Vish, “Pediatric window falls: not just a problem for children in
high rises,” Injury Prevention, vol. 11, no. 5, pp. 300–303, Oct. 2005, doi:
10.1136/ip.2005.008664.

Washington 2004

The washington-2004-surface.csv file contains the horizontal (x)
and vertical (y) coordinates of a jump measured at a Washington, USA ski resort
in 2004. The comma separated value file can be loaded with numpy.loadtxt()
and used to create a Surface. The
plot() method is used to quickly
visualize the measured landing surface. The takeoff location is situated at
(x=0 m, y=0 m).

landing_surface_data = np.loadtxt('washington-2004-surface.csv',
 delimiter=',', # comma separated
 skiprows=1) # skip the header row

landing_surface = Surface(landing_surface_data[:, 0], # x values in meters
 landing_surface_data[:, 1]) # y values in meters

ax = landing_surface.plot()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-7.png]

The takeoff angle of this jump was measured as 25 degrees. Using this angle the
equivalent fall height can be visualized across the landing surface.

takeoff_angle = 25.0 # degrees
takeoff_point = (0.0, 0.0) # meters

skier = Skier()

plot_efh(landing_surface, takeoff_angle, takeoff_point,
 skier=skier, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-8.png]

For high takeoff speeds, this jump has very large equivalent fall heights (3 m
to 13 m).

The actual jump can be compared to a jump designed with a constant equivalent
fall height. The figure below shows such a comparison. Note that the first 15
meters or so of the surface is reasonable, but if a jumper lands beyond 15 m
they will be subjected to dangerous impact velocities.

fall_height = 1.0 # meters
slope_angle = -10.0 # degrees
approach_length = 220.0 # meters

compare_measured_to_designed(landing_surface, fall_height, slope_angle,
 approach_length, takeoff_angle, skier)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-9.png]

Utah 2010

The utah-2010-surface.csv file contains the horizontal (x) and
vertical (y) coordinates of a jump measured at a Utah, USA ski resort in
February 2010. The comma separated value file can be loaded with
numpy.loadtxt() and used to create a
Surface. The
plot() method is used to quickly
visualize the measured landing surface. The takeoff location is situated at
(x=0 m, y=0 m).

landing_surface_data = np.loadtxt('utah-2010-surface.csv',
 delimiter=',', # comma separated
 skiprows=1) # skip the header row

landing_surface = Surface(landing_surface_data[:, 0], # x values in meters
 landing_surface_data[:, 1]) # y values in meters

ax = landing_surface.plot()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-10.png]

The takeoff angle of this jump was measured as 23 degrees. Using this angle the
equivalent fall height can be visualized across the landing surface.

takeoff_angle = 23.0 # degrees
takeoff_point = (0.0, 0.0) # meters

skier = Skier()

plot_efh(landing_surface, takeoff_angle, takeoff_point,
 skier=skier, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-11.png]

For high takeoff speeds, this jump has very large equivalent fall heights (5 m
to 10 m). And no mater the takeoff speed, the equivalent fall height is greater
than or equal to the 1.5 m threshold for knee collapse.

The measured jump can be compared to a jump designed to ensure a constant
equivalent fall height of 1.5 m at any takeoff speed. The figure below shows
such a comparison. Note that the first 15 meters or so of the surface is
reasonable, but if a jumper lands beyond 15 m they will be subjected to
dangerous impact speeds.

fall_height = 1.0 # meters
slope_angle = -12.0 # degrees
approach_length = 220.0 # meters

compare_measured_to_designed(landing_surface, fall_height, slope_angle,
 approach_length, takeoff_angle, skier)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-12.png]

Colorado 2009

The colorado-2009-surface.csv file contains the horizontal (x) and
vertical (y) coordinates of a jump measured by professional surveyors at a
Colorado, USA ski resort in March 2009. The comma separated value file can be
loaded with numpy.loadtxt() and used to create a
Surface. The
plot() method is used to quickly
visualize the measured landing surface. The takeoff location is situated at
(x=0 m, y=0 m).

landing_surface_data = np.loadtxt('colorado-2009-surface.csv',
 delimiter=',', # comma separated
 skiprows=1) # skip the header row

landing_surface = Surface(landing_surface_data[:, 0], # x values in meters
 landing_surface_data[:, 1]) # y values in meters

ax = landing_surface.plot()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-13.png]

The takeoff angle of this jump was measured as 16 degrees. Using this angle the
equivalent fall height can be visualized across the landing surface.

takeoff_angle = 16.0 # degrees
takeoff_point = (0.0, 0.0) # meters

skier = Skier()

plot_efh(landing_surface, takeoff_angle, takeoff_point,
 skier=skier, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-14.png]

The actual jump can be compared to a jump designed with a constant equivalent
fall height. The figure below shows such a comparison.

fall_height = 1.0 # meters
slope_angle = -15.0 # degrees
approach_length = 70.0 # meters

compare_measured_to_designed(landing_surface, fall_height, slope_angle,
 approach_length, takeoff_angle, skier)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-15.png]

Wisconsin 2015

The wisconsin-2015-surface.csv file contains the horizontal (x) and
vertical (y) coordinates of a jump measured at a Wisconsin, USA ski resort in
2015. The comma separated value file can be loaded with numpy.loadtxt() and
used to create a Surface. The
plot() method is used to quickly
visualize the measured landing surface. The takeoff location is situated at
(x=0 m, y=0 m).

landing_surface_data = np.loadtxt('wisconsin-2015-surface.csv',
 delimiter=',', # comma separated
 skiprows=1) # skip the header row

landing_surface = Surface(landing_surface_data[:, 0], # x values in meters
 landing_surface_data[:, 1]) # y values in meters

ax = landing_surface.plot()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-16.png]

The takeoff angle of this jump was measured as 13 degrees. Using this angle the
equivalent fall height can be visualized across the landing surface.

takeoff_angle = 13.0 # degrees
takeoff_point = (0.0, 0.0) # meters

skier = Skier()

plot_efh(landing_surface, takeoff_angle, takeoff_point,
 skier=skier, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-17.png]

The actual jump can be compared to a jump designed with a constant equivalent
fall height. The figure below shows such a comparison.

fall_height = 1.0 # meters
slope_angle = -10.0 # degrees
approach_length = 100.0 # meters

compare_measured_to_designed(landing_surface, fall_height, slope_angle,
 approach_length, takeoff_angle, skier)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-18.png]

Sydney 2020

The sydney-measurements-2020.csv file contains the distance along
the jump surface and absolute angle measurements (different measures than all
above files) of a single-track dirt mountain bike jump measured near Sydney,
Australia in 2020. The comma separated value file can be loaded with
numpy.loadtxt(). These measurements require conversion to the Cartesian
coordinates for constructing the surface using
cartesian_from_measurements(). After conversion
the data can be used to create a Surface. The
plot() method is used to quickly
visualize the measured landing surface. The takeoff location is situated at the
first measurement point.

surface_measurement_data = np.loadtxt('sydney-measurements-2020.csv',
 delimiter=',', # comma separated
 skiprows=1) # skip the header row

x, y, takeoff_point, takeoff_angle = cartesian_from_measurements(
 surface_measurement_data[:, 0], # distance along surface in meters
 np.deg2rad(surface_measurement_data[:, 1])) # absolute angle deg -> rad

landing_surface = Surface(x, # x values in meters
 y) # y values in meters

ax = landing_surface.plot()

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-19.png]

The takeoff angle is taken from the angle measurements. Using this angle the
equivalent fall height can be visualized across the landing surface.

skier = Skier()

plot_efh(landing_surface, np.rad2deg(takeoff_angle), takeoff_point,
 skier=skier, increment=1.0)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-20.png]

The actual jump can be compared to a jump designed with a constant equivalent
fall height. The figure below shows such a comparison.

fall_height = 1.0 # meters
slope_angle = -7.0 # degrees
approach_length = 140.0 # meters

compare_measured_to_designed(landing_surface, fall_height, slope_angle,
 approach_length, np.rad2deg(takeoff_angle), skier)

(Source code, png, hires.png, pdf)

[image: _images/real-jumps-21.png]

Application Programming Interface (API)

skijumpdesign/functions.py

	
skijumpdesign.functions.cartesian_from_measurements(distances, angles, takeoff_distance=None)

	Returns the Cartesian coordinates of a surface given measurements of
distance along the surface and angle measurements at each distance measure
along with the takeoff point and takeoff angle.

	Parameters:

	
	distances (array_like, shape(n,)) – Distances measured from an origin location on a jump surface along the
surface of the jump.

	angles (array_like, shape(n,)) – Angle of the slope surface at the distance measures in radians.
Positive about a right handed z axis.

	takeoff_distance (float) – Distance value where the takeoff is located (only if the takeoff is on
the surface on the measured portion of the surface).

	Returns:

	
	x (ndarray, shape(n-1,)) – Longitudinal coordinates of the surface.

	y (ndarray, shape(n-1,)) – Vertical coordinates of the surface.

	takeoff_point (tuple of floats) – (x, y) coordinates of the takeoff point.

	takeoff_angle (float) – Angle in radians at the takeoff point.

	
skijumpdesign.functions.make_jump(slope_angle, start_pos, approach_len, takeoff_angle, fall_height, plot=False)

	Returns a set of surfaces and output values that define the equivalent
fall height jump design and the skier’s flight trajectory.

	Parameters:

	
	slope_angle (float) – The parent slope angle in degrees. Counter clockwise is positive and
clockwise is negative.

	start_pos (float) – The distance in meters along the parent slope from the top (x=0, y=0)
to where the skier starts skiing.

	approach_len (float) – The distance in meters along the parent slope the skier travels before
entering the takeoff.

	takeoff_angle (float) – The angle in degrees at end of the takeoff ramp. Counter clockwise is
positive and clockwise is negative.

	fall_height (float) – The desired equivalent fall height of the landing surface in meters.

	plot (boolean) – If True a matplotlib figure showing the jump will appear.

	Returns:

	
	slope (FlatSurface) – The parent slope starting at (x=0, y=0) until a meter after the jump.

	approach (FlatSurface) – The slope the skier travels on before entering the takeoff.

	takeoff (TakeoffSurface) – The circle-clothoid-circle-flat takeoff ramp.

	landing (LandingSurface) – The equivalent fall height landing surface.

	landing_trans (LandingTransitionSurface) – The minimum exponential landing transition.

	flight (Trajectory) – The maximum velocity flight trajectory.

	outputs (dictionary) – A dictionary of output values with keys: Takeoff Speed, Flight
Time, and Snow Budget.

	
skijumpdesign.functions.plot_efh(surface, takeoff_angle, takeoff_point, show_knee_collapse_line=True, skier=None, increment=0.2, ax=None)

	Returns a matplotlib axes containing a plot of the surface and its
corresponding equivalent fall height.

	Parameters:

	
	surface (Surface) – A Surface for a 2D curve expressed in a standard Cartesian
coordinate system.

	takeoff_angle (float) – Takeoff angle in degrees.

	takeoff_point (2-tuple of floats) – x and y coordinates relative to the surface’s coordinate system of the
point at which the skier leaves the takeoff ramp.

	show_knee_collapse_line (bool, optional) – Displays a line on the EFH plot indicating the EHF above which even
elite ski jumpers are unable to prevent knee collapse. This value is
taken from [Minetti].

	skier (Skier, optional) – A skier instance. This is passed to calculate_efh.

	increment (float, optional) – x increment in meters between each calculated landing location. This is
passed to calculate_efh.

	ax (array of Axes, shape(2,), optional) – An existing matplotlib axes to plot to - ax[0] equivalent fall height,
ax[1] surface profile.

References

[Minetti]
Minetti AE, Ardigo LP, Susta D, Cotelli F (2010)
Using leg muscles as shock absorbers: theoretical predictions and
experimental results of drop landing performance.
Ergonomics 41(12):1771–1791

	
skijumpdesign.functions.plot_jump(slope, approach, takeoff, landing, landing_trans, flight)

	Returns a matplotlib axes with the jump and flight plotted given the
surfaces created by make_jump().

	
skijumpdesign.functions.snow_budget(parent_slope, takeoff, landing, landing_trans)

	Returns the jump’s cross sectional snow budget area of the EFH jump.

	Parameters:

	
	parent_slope (FlatSurface) – A FlatSurface that spans before and after the jump.

	takeoff (TakeoffSurface) – The clothiod-circle-clothiod-flat takeoff surface.

	landing (LandingSurface) – The EFH landing surface.

	landing_trans (LandingTransitionSurface) – The EFH landing transition surface.

	Returns:

	The cross sectional snow budget (area between the parent slope and jump
curve) in meters squared.

	Return type:

	float

skijumpdesign/skiers.py

	
class skijumpdesign.skiers.Skier(mass=75.0, area=0.34, drag_coeff=0.821, friction_coeff=0.03, tolerable_sliding_acc=1.5, tolerable_landing_acc=3.0)

	Bases: object

Class that represents a two dimensional skier who can slide on surfaces
and fly in the air.

Instantiates a skier with default properties.

	Parameters:

	
	mass (float, optional) – The mass of the skier in kilograms.

	area (float, optional) – The frontal area of the skier in squared meters.

	drag_coeff (float, optional) – The air drag coefficient of the skier.

	friction_coeff (float, optional) – The sliding friction coefficient between the skis and the slope.

	tolerable_sliding_acc (float, optional) – The maximum normal acceleration in G’s that a skier can withstand
while sliding.

	tolerable_landing_acc (float, optional) – The maximum normal acceleration in G’s that a skier can withstand
when landing.

	
drag_force(speed)

	Returns the drag force in Newtons opposing the speed in meters per
second of the skier.

	
end_speed_on(surface, **kwargs)

	Returns the ending speed after sliding on the provided surface.
Keyword args are passed to Skier.slide_on().

	
end_vel_on(surface, **kwargs)

	Returns the ending velocity (vx, vy) after sliding on the provided
surface. Keyword args are passed to Skier.slide_on().

	
fly_to(surface, init_pos, init_vel, fine=True, compute_acc=True, logging_type='info')

	Returns the flight trajectory of the skier given the initial
conditions and a surface which the skier contacts at the end of the
flight trajectory.

	Parameters:

	
	surface (Surface) – A landing surface. This surface must intersect the flight path.

	init_pos (2-tuple of floats) – The x and y coordinates of the starting point of the flight in
meters.

	init_vel (2-tuple of floats) – The x and y components of the skier’s velocity at the start of the
flight in meters per second.

	fine (boolean) – If True two integrations occur. The first finds the landing time
with coarse time steps and the second integrates over a finer
equally spaced time steps. False will skip the second integration.

	compute_acc (boolean, optional) – If true acceleration will be calculated. If false acceleration is
set to zero.

	logging_type (string) – The logging level desired for the non-debug logging calls in this
function. Useful for suppressing too much information since this
runs a lot.

	Returns:

	trajectory – A trajectory instance that contains the time, position, velocity,
acceleration, speed, and slope of the flight.

	Return type:

	Trajectory

	Raises:

	InvalidJumpError – Error if the skier does not contact a surface within
 Skier.max_flight_time.

	
friction_force(speed, slope=0.0, curvature=0.0)

	Returns the friction force in Newtons opposing the speed of the
skier.

	Parameters:

	
	speed (float) – The tangential speed of the skier in meters per second.

	slope (float, optional) – The slope of the surface at the skier’s point of contact.

	curvature (float, optional) – The curvature of the surface at the skier’s point of contact.

	
max_flight_time = 30.0

	

	
samples_per_sec = 360

	

	
slide_on(surface, init_speed=0.0, fine=True)

	Returns the trajectory of the skier sliding over a surface.

	Parameters:

	
	surface (Surface) – A surface that the skier will slide on.

	init_speed (float, optional) – The magnitude of the velocity of the skier at the start of the
surface which is directed tangent to the surface.

	fine (boolean) – If True two integrations occur. The first finds the exit time with
coarse time steps and the second integrates over a finer equally
spaced time steps. False will skip the second integration.

	Returns:

	trajectory – A trajectory instance that contains the time, position, velocity,
acceleration, speed, and slope of the slide,

	Return type:

	Trajectory

	Raises:

	InvalidJumpError – Error if skier can’t reach the end of the surface within 1000
 seconds.

	
speed_to_land_at(landing_point, takeoff_point, takeoff_angle, surf)

	Returns the magnitude of the velocity required to land at a specific
point given launch position and angle.

	Parameters:

	
	landing_point (2-tuple of floats) – The (x, y) coordinates of the desired landing point in meters.

	takeoff_point (2-tuple of floats) – The (x, y) coordinates of the takeoff point in meters.

	takeoff_angle (float) – The takeoff angle in radians.

	surf (Surface) – This should most likely be the parent slope but needs to be
something that ensures the skier flies past the landing point.

	Returns:

	takeoff_speed – The magnitude of the takeoff velocity.

	Return type:

	float

skijumpdesign/surfaces.py

	
class skijumpdesign.surfaces.ClothoidCircleSurface(entry_angle, exit_angle, entry_speed, tolerable_acc, init_pos=(0.0, 0.0), gamma=0.99, num_points=200)

	Bases: Surface

Class that represents a surface made up of a circle bounded by two
clothoids.

Instantiates a clothoid-circle-clothoid curve.

	Parameters:

	
	entry_angle (float) – The entry angle tangent to the start of the left clothoid in
radians.

	exit_angle (float) – The exit angle tangent to the end of the right clothoid in radians.

	entry_speed (float) – The magnitude of the skier’s velocity in meters per second as they
enter the left clothiod.

	tolerable_acc (float) – The tolerable normal acceleration of the skier in G’s.

	init_pos (2-tuple of floats) – The x and y coordinates of the start of the left clothoid.

	gamma (float) – Fraction of circular section.

	num_points (integer, optional) – The number of points in each of the three sections of the curve.

	
class skijumpdesign.surfaces.FlatSurface(angle, length, init_pos=(0.0, 0.0), num_points=100)

	Bases: Surface

Class that represents a flat surface angled relative to the
horizontal.

Instantiates a flat surface that is oriented at a counterclockwise
angle from the horizontal.

	Parameters:

	
	angle (float) – The angle of the surface in radians. Counterclockwise (about z) is
positive, clockwise is negative.

	length (float) – The distance in meters along the surface from the initial position.

	init_pos (2-tuple of floats, optional) – The x and y coordinates in meters that locate the start of the
surface.

	num_points (integer, optional) – The number of points used to define the surface coordinates.

	
property angle

	Returns the angle wrt to horizontal in radians of the surface.

	
distance_from(xp, yp)

	Returns the shortest distance from point (xp, yp) to the surface.

	Parameters:

	
	xp (float) – The horizontal, x, coordinate of the point.

	yp (float) – The vertical, y, coordinate of the point.

	Returns:

	distance – The shortest distance from the point to the surface. If the point
is above the surface a positive distance is returned, else a
negative distance.

	Return type:

	float

	
class skijumpdesign.surfaces.HorizontalSurface(height, length, start=0.0, num_points=100)

	Bases: Surface

Instantiates a class that represents a horizontal surface at a
height above the x axis.abs

	Parameters:

	
	height (float) – The height of the surface above the horizontal x axis in meters.

	length (float) – The length of the surface in meters.

	start (float, optional) – The x location of the start of the left most point of the surface.

	num_points (integer, optional) – The number of (x,y) coordinates.

	
distance_from(xp, yp)

	Returns the shortest distance from point (xp, yp) to the surface.

	Parameters:

	
	xp (float) – The horizontal, x, coordinate of the point.

	yp (float) – The vertical, y, coordinate of the point.

	Returns:

	distance – The shortest distance from the point to the surface. If the point
is above the surface a positive distance is returned, else a
negative distance.

	Return type:

	float

	
class skijumpdesign.surfaces.LandingSurface(skier, takeoff_point, takeoff_angle, max_landing_point, fall_height, surf)

	Bases: Surface

Class that defines an equivalent fall height landing surface.

Instantiates a surface that ensures impact velocity is equivalent to
that from a vertical fall.

	Parameters:

	
	skier (Skier) – A skier instance.

	takeoff_point (2-tuple of floats) – The point at which the skier leaves the takeoff ramp.

	takeoff_angle (float) – The takeoff angle in radians.

	max_landing_point (2-tuple of floats) – The maximum x position that the landing surface will attain in
meters. In the standard design, this is the start of the landing
transition point.

	fall_height (float) – The desired equivalent fall height in meters. This should always be
greater than zero.

	surf (Surface) – A surface below the full flight trajectory, the parent slope is a
good choice. It is useful if the distance_from() method runs very
fast, as it is called a lot internally.

	
property allowable_impact_speed

	Returns the perpendicular speed one would reach if dropped from the
provided fall height.

	
class skijumpdesign.surfaces.LandingTransitionSurface(parent_surface, flight_traj, fall_height, tolerable_acc, num_points=100)

	Bases: Surface

Class representing a acceleration limited exponential curve that
transitions the skier from the landing surface to the parent slope.

Instantiates an exponentially decaying surface that connects the
landing surface to the parent slope.

	Parameters:

	
	parent_surface (FlatSurface) – The parent slope in which the landing transition should be tangent
to on exit.

	flight_traj (Trajectory) – The flight trajectory from the takeoff point to the parent slope.

	fall_height (float) – The desired equivalent fall height for the jump design in meters.

	tolerable_acc (float) – The maximum normal acceleration the skier should experience in the
landing.

	num_points (integer) – The number of points in the surface.

	
acc_error_tolerance = 0.001

	

	
property allowable_impact_speed

	Returns the perpendicular speed one would reach if dropped from the
provided fall height.

	
calc_trans_acc(x)

	Returns the acceleration in G’s the skier feels at the exit
transition occurring if the transition starts at the provided
horizontal location, x.

	
delta = 0.01

	

	
find_parallel_traj_point()

	Returns the position of a point on the flight trajectory where its
tangent is parallel to the parent slope. This is used as a starting
guess for the start of the landing transition point.

	
find_transition_point()

	Returns the horizontal position indicating the intersection of the
flight path with the beginning of the landing transition. This is the
last possible transition point, that by definition minimizes the
transition snow budget, that satisfies the allowable transition
acceleration.

Notes

This uses Newton’s method to find an adequate point but may fail to do
so with some combinations of flight trajectories, parent slope
geometry, and allowable acceleration. A warning will be emitted if the
maximum number of iterations is reached in this search and the curve is
likely invalid.

	
max_iterations = 1000

	

	
class skijumpdesign.surfaces.Surface(x, y)

	Bases: object

Base class for a 2D curve that represents the cross section of a surface
expressed in a standard Cartesian coordinate system.

Instantiates an arbitrary 2D surface.

	Parameters:

	
	x (array_like, shape(n,)) – The horizontal, x, coordinates of the slope. x[0] should be the
left most horizontal position and corresponds to the start of the
surface. This should be monotonically increasing and ideally have
no adjacent spacings less than 0.3 meter.

	y (array_like, shape(n,)) – The vertical, y, coordinates of the slope. y[0] corresponds to the
start of the surface.

	Warns:

	
	x and y values that have any x spacings larger than 0.3 meters will be

	resampled at x spacings of approximately 0.3 meters.

	
area_under(x_start=None, x_end=None, interval=0.05)

	Returns the area under the curve integrating wrt to the x axis at
0.05 m intervals using the trapezoidal rule.

	
calculate_efh(takeoff_angle, takeoff_point, skier, increment=0.2)

	Returns the equivalent fall height for the surface at the specified
constant intervals relative to the provided takeoff point or the start
of the surface.

	Parameters:

	
	takeoff_angle (float) – Takeoff angle in radians.

	takeoff_point (2-tuple of floats) – x and y coordinates of the point at which the skier leaves the
takeoff ramp.

	skier (Skier) – A skier instance.

	increment (float, optional) – x increment in meters between each calculated landing location.

	Returns:

	
	distance_x (ndarray, shape(n,)) – Horizontal x locations of the equivalent fall height measures
spaced at the specified meter intervals relative to leftmost point
on the surface or the takeoff point, whichever is greater.

	efh (ndarray, shape(n,)) – The equivalent fall height corresponding to each value in
distance_x.

	takeoff_speeds (ndarray, shape(n,)) – The takeoff speed required to land the corresponding x coordinate.

	
distance_from(xp, yp)

	Returns the shortest distance from point (xp, yp) to the surface.

	Parameters:

	
	xp (float) – The horizontal, x, coordinate of the point.

	yp (float) – The vertical, y, coordinate of the point.

	Returns:

	distance – The shortest distance from the point to the surface. If the point
is above the surface a positive distance is returned, else a
negative distance.

	Return type:

	float

Note

This general implementation can be slow, so implement overloaded
distance_from() methods in subclasses when you can.

	
property end

	Returns the x and y coordinates at the end point of the surface.

	
height_above(surface)

	Returns an array of values giving the height each point in this
surface is above the provided surface.

	
length()

	Returns the length of the surface in meters via a numerical line
integral.

	
max_x_spacing = 0.3

	

	
plot(ax=None, **plot_kwargs)

	Returns a matplotlib axes containing a plot of the surface.

	Parameters:

	
	ax (Axes) – An existing matplotlib axes to plot to.

	plot_kwargs (dict) – Arguments to be passed to Axes.plot().

	
shift_coordinates(delx, dely)

	Shifts the x and y coordinates by delx and dely respectively. This
modifies the surface in place.

	
property start

	Returns the x and y coordinates at the start point of the
surface.

	
class skijumpdesign.surfaces.TakeoffSurface(skier, entry_angle, exit_angle, entry_speed, time_on_ramp=0.25, gamma=0.99, init_pos=(0.0, 0.0), num_points=200)

	Bases: Surface

Class that represents a surface made up of a circle bounded by two
clothoids with a flat exit surface.

Instantiates the takeoff curve with the flat takeoff ramp added to
the terminus of the clothoid-circle-clothoid curve.

	Parameters:

	
	skier (Skier) – A skier instance.

	entry_angle (float) – The entry angle tangent to the start of the left clothoid in
radians.

	exit_angle (float) – The exit angle tangent to the end of the right clothoid in radians.

	entry_speed (float) – The magnitude of the skier’s velocity in meters per second as they
enter the left clothiod.

	time_on_ramp (float, optional) – The time in seconds that the skier should be on the takeoff ramp
before launch.

	gamma (float, optional) – Fraction of circular section.

	init_pos (2-tuple of floats, optional) – The x and y coordinates of the start of the left clothoid.

	num_points (integer, optional) – The number of points in each of the three sections of the curve.

skijumpdesign/trajectories.py

	
class skijumpdesign.trajectories.Trajectory(t, pos, vel=None, acc=None, speed=None)

	Bases: object

Class that describes a 2D trajectory.

Instantiates a trajectory.

	Parameters:

	
	t (array_like, shape(n,)) – The time values of the trajectory.

	pos (array_like, shape(n, 2)) – The x and y coordinates of the position.

	vel (array_like, shape(n, 2), optional) – The x and y components of velocity. If not provided numerical
differentiation of position will be used.

	acc (array_like, shape(n, 2), optional) – The x and y components of acceleration. If not provided numerical
differentiation of velocity will be used.

	speed (array_like, shape(n, 2), optional) – The magnitude of the velocity. If not provided it will be
calculated from the velocity components.

	
property duration

	Returns the duration of the trajectory in seconds.

	
plot(ax=None, **plot_kwargs)

	Returns a matplotlib axes containing a plot of the trajectory
position.

	Parameters:

	
	ax (Axes) – An existing matplotlib axes to plot to.

	plot_kwargs (dict) – Arguments to be passed to Axes.plot().

	
plot_time_series()

	Plots all of the time series stored in the trajectory.

	
shift_coordinates(delx, dely)

	Shifts the x and y coordinates by delx and dely respectively. This
modifies the surface in place.

skijumpdesign/utils.py

	
exception skijumpdesign.utils.InvalidJumpError

	Bases: Exception

Custom class to signal that a poor combination of parameters have been
supplied to the surface building functions.

	
skijumpdesign.utils.speed2vel(speed, angle)

	Returns the x and y components of velocity given the magnitude and angle
of the velocity vector.

	Parameters:

	
	speed (float) – Magnitude of the velocity vector in meters per second.

	angle (float) – Angle of velocity vector in radians. Clockwise is negative and counter
clockwise is positive.

	Returns:

	
	vel_x (float) – X component of velocity in meters per second.

	vel_y (float) – Y component of velocity in meters per second.

	
skijumpdesign.utils.vel2speed(hor_vel, ver_vel)

	Returns the magnitude and angle of the velocity vector given the
horizontal and vertical components.

	Parameters:

	
	hor_vel (float) – X component of velocity in meters per second.

	ver_vel (float) – Y component of velocity in meters per second.

	Returns:

	
	speed (float) – Magnitude of the velocity vector in meters per second.

	angle (float) – Angle of velocity vector in radians. Clockwise is negative and counter
clockwise is positive.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 skijumpdesign	

 	
 	
 skijumpdesign.functions	

 	
 	
 skijumpdesign.skiers	

 	
 	
 skijumpdesign.surfaces	

 	
 	
 skijumpdesign.trajectories	

 	
 	
 skijumpdesign.utils	

Index

 A
 | C
 | D
 | E
 | F
 | H
 | I
 | L
 | M
 | P
 | S
 | T
 | V

A

 	
 	acc_error_tolerance (skijumpdesign.surfaces.LandingTransitionSurface attribute)

 	allowable_impact_speed (skijumpdesign.surfaces.LandingSurface property)

 	(skijumpdesign.surfaces.LandingTransitionSurface property)

 	
 	angle (skijumpdesign.surfaces.FlatSurface property)

 	area_under() (skijumpdesign.surfaces.Surface method)

C

 	
 	calc_trans_acc() (skijumpdesign.surfaces.LandingTransitionSurface method)

 	calculate_efh() (skijumpdesign.surfaces.Surface method)

 	
 	cartesian_from_measurements() (in module skijumpdesign.functions)

 	ClothoidCircleSurface (class in skijumpdesign.surfaces)

D

 	
 	delta (skijumpdesign.surfaces.LandingTransitionSurface attribute)

 	distance_from() (skijumpdesign.surfaces.FlatSurface method)

 	(skijumpdesign.surfaces.HorizontalSurface method)

 	(skijumpdesign.surfaces.Surface method)

 	
 	drag_force() (skijumpdesign.skiers.Skier method)

 	duration (skijumpdesign.trajectories.Trajectory property)

E

 	
 	end (skijumpdesign.surfaces.Surface property)

 	
 	end_speed_on() (skijumpdesign.skiers.Skier method)

 	end_vel_on() (skijumpdesign.skiers.Skier method)

F

 	
 	find_parallel_traj_point() (skijumpdesign.surfaces.LandingTransitionSurface method)

 	find_transition_point() (skijumpdesign.surfaces.LandingTransitionSurface method)

 	
 	FlatSurface (class in skijumpdesign.surfaces)

 	fly_to() (skijumpdesign.skiers.Skier method)

 	friction_force() (skijumpdesign.skiers.Skier method)

H

 	
 	height_above() (skijumpdesign.surfaces.Surface method)

 	
 	HorizontalSurface (class in skijumpdesign.surfaces)

I

 	
 	InvalidJumpError

L

 	
 	LandingSurface (class in skijumpdesign.surfaces)

 	
 	LandingTransitionSurface (class in skijumpdesign.surfaces)

 	length() (skijumpdesign.surfaces.Surface method)

M

 	
 	make_jump() (in module skijumpdesign.functions)

 	max_flight_time (skijumpdesign.skiers.Skier attribute)

 	max_iterations (skijumpdesign.surfaces.LandingTransitionSurface attribute)

 	max_x_spacing (skijumpdesign.surfaces.Surface attribute)

 	
 module

 	skijumpdesign.functions

 	skijumpdesign.skiers

 	skijumpdesign.surfaces

 	skijumpdesign.trajectories

 	skijumpdesign.utils

P

 	
 	plot() (skijumpdesign.surfaces.Surface method)

 	(skijumpdesign.trajectories.Trajectory method)

 	
 	plot_efh() (in module skijumpdesign.functions)

 	plot_jump() (in module skijumpdesign.functions)

 	plot_time_series() (skijumpdesign.trajectories.Trajectory method)

S

 	
 	samples_per_sec (skijumpdesign.skiers.Skier attribute)

 	shift_coordinates() (skijumpdesign.surfaces.Surface method)

 	(skijumpdesign.trajectories.Trajectory method)

 	Skier (class in skijumpdesign.skiers)

 	
 skijumpdesign.functions

 	module

 	
 skijumpdesign.skiers

 	module

 	
 skijumpdesign.surfaces

 	module

 	
 	
 skijumpdesign.trajectories

 	module

 	
 skijumpdesign.utils

 	module

 	slide_on() (skijumpdesign.skiers.Skier method)

 	snow_budget() (in module skijumpdesign.functions)

 	speed2vel() (in module skijumpdesign.utils)

 	speed_to_land_at() (skijumpdesign.skiers.Skier method)

 	start (skijumpdesign.surfaces.Surface property)

 	Surface (class in skijumpdesign.surfaces)

T

 	
 	TakeoffSurface (class in skijumpdesign.surfaces)

 	
 	Trajectory (class in skijumpdesign.trajectories)

V

 	
 	vel2speed() (in module skijumpdesign.utils)

 _images/real-jumps-8.png
Surface Profile
® Takeoff Point

E
Bl ggasRans
(1] 34B13H I1es ua1eninb3

[w] uonsod 1earan

Horizontal Position [m]

_images/real-jumps-9.png
Design Speed: 17 m/s

_ 30
= P
<o =
§ | = rmasms
g —40 Flight @ 13 m/s
. Flight @ 17 mis
§ ~* 1 — Designea Landing Surface
§ ~50 1 — Messured Landing Surfsce
£
= [avg. 2 story il Hergnt Al
Eus Avg. 1 Story Fal Height
z Knee Collapse Heioht A
k] 100 Measured Landing Surface
Designed Landing Surface |

20 230 200 250 260 270 280 290 300
Horizontal Position [m]

_images/real-jumps-6.png
Design Speed: 13 m/s

— Flight @ 7 mis

Fiight @ 10 m/s
Flight @ 13 m/s
—— Designed Landing Surface
— Measured Landing Surface

Vertical Position [m]
|

Avg. 2 Story Fall Height
Avg. 1 Story Fal Height
Knee Collapse Height
Measured Landing Surface
Designed Landing Surface

180 1950 200 210 20 230
Horizontal Position [m]

_images/real-jumps-7.png
Vertical Position [m]

o

B EY
Horizontal Position [m]

40

_images/analyze-jump-2_02.png
Acceleration Plots

Time [s]

{s/5/] uonesaE3y

(/5] Uonesa(@23y o apmuBen

_static/file.png

_images/analyze-jump-3_00.png
15

¥ ? S 833
] uonisod 1e93san .
[pes] aibuy.
S 88 3¢ ¢

[w] onisog [ewozLIoN

[wyw] adois

15

10

05

0o

15

10

05

0o

Time [s]

Time [s]

_static/minus.png

_images/analyze-jump-2_00.png
R
[w] uonsog jewozLIOH

Tw] uoisod 1eansaA 7
[pes] aibuy.
¢ 8 3

[wyw] adois

Time [s]

Time [s]

_images/analyze-jump-2_01.png
Velocity Plots

[s/w] Kaoian [s/w] Aa12012A 10 3pryuGen

Time [s]

_images/analyze-jump-4.png
Vertical Position [m]

—a0 20
Horizontal Position [m]

)

_images/analyze-jump-6.png
Vertical Position [m]

Equivalent Fall Height [m]

— Surface Profile
© Takeoff Point

Knee Collapse EFH, 1.5m

60 —a0 20
Horizontal Position [m]

_images/analyze-jump-3_01.png
Velocity Plots

02 o4 05 08 10 12 14 1s
Time [s]

0o

[sfw] Avorsn

[s/u] fa0i2A 10 3pmyuden

_static/plus.png

_images/analyze-jump-3_02.png
Acceleration Plots

02 oa 06 o8 1o 12 14 1s
Time [s]

0o

{575/ uonesiea2y

980
975
970
965
960

[s/s/w] uonesai@23y jo apnyuben

_images/build-jump-1.png
Vertical Position [m]

iy 5
Horizontal Position [m]

Y

_images/build-jump-10.png
Vertical Position [m]

T~

Siope

— Approach
— Takeoff
— Landing
— Landing Transition
Flight
[) B 0 @ 50 &

Horizontal Position [m]

_images/analyze-jump-1.png
Vertical Position [m]

—a0 20
Horizontal Position [m]

)

_images/build-jump-2_00.png
T g R
[w] vonisod jedruan. T ! T
[pei] aibuy

[w] uonsog jewozIOH

[wyw] adois

Time [s]

Time [s]

nav.xhtml

 Table of Contents

 		
 Welcome to skijumpdesign’s documentation!

 		
 Installation

 		
 conda

 		
 pip

 		
 setuptools

 		
 Optional dependencies

 		
 Development Installation

 		
 Render.com Installation

 		
 Running the Web Application

 		
 User

 		
 Developer

 		
 In a terminal

 		
 In Spyder

 		
 Example: Design EFH Jump

 		
 Approach

 		
 Approach-Takeoff Transition

 		
 Flight

 		
 Landing Transition

 		
 Constant EFH Landing

 		
 Entire Jump

 		
 Example: Analyze Jump EFH

 		
 Load Data

 		
 Flight

 		
 Calculate Equivalent Fall Height

 		
 Examples: Analysis of Real Jumps

 		
 Selection of an Equivalent Fall Height

 		
 Design Speed

 		
 California 2002

 		
 Washington 2004

 		
 Utah 2010

 		
 Colorado 2009

 		
 Wisconsin 2015

 		
 Sydney 2020

 		
 Application Programming Interface (API)

 		
 skijumpdesign/functions.py

 		
 cartesian_from_measurements()

 		
 make_jump()

 		
 plot_efh()

 		
 plot_jump()

 		
 snow_budget()

 		
 skijumpdesign/skiers.py

 		
 Skier

 		
 skijumpdesign/surfaces.py

 		
 ClothoidCircleSurface

 		
 FlatSurface

 		
 HorizontalSurface

 		
 LandingSurface

 		
 LandingTransitionSurface

 		
 Surface

 		
 TakeoffSurface

 		
 skijumpdesign/trajectories.py

 		
 Trajectory

 		
 skijumpdesign/utils.py

 		
 InvalidJumpError

 		
 speed2vel()

 		
 vel2speed()

_images/build-jump-3.png
Vertical Position [m]

b

5 B
Horizontal Position [m]

=

EY

_images/build-jump-4_00.png
06

5 @ @ oo T
TT T 9
[w] vomisod 12om2A fpet aibuw

1] uonisog [eawozLIoN

[wyw] adois

04 06
Time [s]

02

0o

04 06
Time [s]

02

0o

_images/build-jump-2_01.png
Velocity Plots

Il E]
s [s/w] AaoRA m m maae

[s/] Ka0f2 Jo apmyuben

Time [s]

_images/build-jump-2_02.png
Acceleration Plots

05 10 15 20 25 30 35 40
Time [s]

0o

{575/ uoneseiea2y

[s/s/w] uonesai@23y Jo apnyuben

_images/build-jump-5_00.png
1s

ot T R A
(1] vonsod 1eanan [pes] aibuy.
R R

1] onisog [ewozLION

i
[wyw] adois

10 15
Time [s]

o5

0o

10 15
Time [s]

s

0o

_images/build-jump-5_01.png
Velocity Plots

025 050 075 100 125 150 175

000

[s/w] Avoisn

[s/] oA 10 3pmuuden

Time [s]

_images/build-jump-4_01.png
Magnitude of Velocity [m/s]

Velocity [m/s]

1225
1200
n7s
150
125

Velocity Plots

—

00 o1 02 03 o0s 05 o0s 07
Time [s]

_images/build-jump-4_02.png
Acceleration Plots

01 o2 03 04 o5 06 07
Time [s]

0o

{575/ uonesiea2y

[s/s/w] uonesai@2y Jo apnyuben

_images/build-jump-5_02.png
Acceleration Plots

050 075 100 125 150 175
Time [s]

025

000

[Eomr—

[s/s/ul uonesaI23y 10 3pmuuden

_images/build-jump-6.png
Vertical Position [m]

o

B EY
Horizontal Position [m]

40

EY

_images/build-jump-7.png
Vertical Position [m]

0

2 EY 40
Horizontal Position [m]

EY

&

_images/index-1.png
Stope
Approach

Takeoff

Landing

Landing Transition
Flight

Vertical Position [m]
o L
111

0 1 2 3 4 =0 w0 70
Horizontal Position [m]

_images/real-jumps-10.png
Vertical Position [m]

0

B 30
Horizontal Position [m]

40

_images/build-jump-8.png
Vertical Position [m]

)

20 0 a0
Horizontal Position [m]

0

&

_images/build-jump-9.png
Vertical Position [m]

Equivalent Fall Height [m]

-10

12

14

16

— Surface Profile
® Takeoff Point

10

05

Horizontal Position [m]

Knee Collapse EFH, 1.5m

775 400 425 450 475 500

_images/real-jumps-13.png
Vertical Position [m]

10 5
Horizontal Position [m]

B

B3

_images/real-jumps-14.png
Vertical Position [m]

° — Surtace Profie
o TokeoffPoint
-
-
-
10
£ Knee Collapse EFH, 1.5m T i I i i

Horizontal Position [m]

_images/real-jumps-11.png
25
S0
15

100

Vertical Position [m]

125

125

100

Equivalent Fall Height [m]

— Surface Profile
® Takeoff Point

Knee Collapse EFH, 1.5m

Horizontal Position [m]

_images/real-jumps-12.png
Design Speed: 20 m/s

g
2 5o Flight @ 10 mis
i Fiignt @ 15 mis
H Fiignt @ 20 s
§ ~60 { — oesigned Lancino surtace
§ | — measurea Lanaing Surtace

2. [A2 story rtieon: i

E 154~ o 1 tory Fai Heiont

z Knee Collapse Heioht

H Measured Landing Surtace p

10 mm Designed Landing surface |
. |

280 300 320
Horizontal Position [m]

_images/real-jumps-16.png
Vertical Position [

00 25 50 75 100 125 150 175 200
Horizontal Position [m]

_images/real-jumps-17.png
— Surface Profile
® Takeoff Point

s

Knee Collapse EFH, 1.5m

Equivalent Fall Height [m]

00 25 50 75 100 125 150 175 200
Horizontal Position [m]

_images/real-jumps-15.png
Vertical Position [m]

Equivalent Fall Height (m]

Design Speed: 15 m/s

—— Designed Landing Surface
— Measured Landing Surface

Flight @ 8 mis
Flight @ 11 m/s
Flight @ 15 m/s

—— Avg. 2 Story Fall Height

Avg. 1 Story Fal Height
Knee Collapse Height

Measured Landing Surface
Designed Landing Surface

7 50 %0 100
Horizontal Position [m]

110

120

_images/real-jumps-2.png
Vertical Position [m]

—— EFH: 0.5 m, Snow Budget: 326 m*
—— EFH: 1.0m, Snow Budget: 298 m*
—— EFH: 15 m, Snow Budget: 275 m*

120 130 140 150
Horizontal Position [m]

160

170

_images/real-jumps-20.png
Vertical Position [m]

00 T urace otie
o Theot Pank

o5

-0

s

E s e Cotape e 15w

] 2 a 6 s 0 12 1a
Horizontal Position [m]

_images/real-jumps-18.png
Vertical Position [m]

175

200

225

Height [m]

Design Speed: 14 m/s
Flight @ 7 mis

Flight @ 11 /s

Flight @ 14 /s

— Designed Landing Surface
— Measured Landing Surface

Avg. 2 Story Fall Height
Avg. 1 Story Fall Height
Knee Collapse Height

Measured Landing Surface
Designed Landing Surface

W0 105 10 15 120 125 130 135
Horizontal Position [m]

_images/real-jumps-19.png
Vertical Position

6 s
Horizontal Position [m]

10

]

1

_images/real-jumps-4.png
Vertical Position [m]

— Surface Profile
® Takeoff Point

Equivalent Fall Height [m]

Knee Collapse EFH, 1.5m

Horizontal Position [m]

_images/real-jumps-21.png
Vertical Position [m]

150

175

200

Equivalent Fall Height (m]

Design Speed: 12 m/s

Flight @ 6 mis
Flight @ 9 mis

Flight @ 12 m/s

—— Designed Landing Surface
— Measured Landing Surface

Avg. 2 Story Fal Height
Avg. 1 Story fall Height
Knee Collapse Height
Measured Landing Surface
Designed Landing Surface

@0 145 150 155 10 s 10 175
Horizontal Position [m]

_images/real-jumps-3.png
Vertical Position [m:

0 5
Horizontal Position [m]

Y

=

